
Graphs – ADTs and Implementations

ORD

DFW

SFO

LAX

John

David
Paul

brown.edu

cox.net

cs.brown.edu

att.net

qwest.net

math.brown.edu

cslab1bcslab1a

Applications of Graphs

 Electronic circuits

 Printed circuit board

 Integrated circuit

 Transportation networks

 Highway network

 Flight network

 Computer networks

 Local area network

 Internet

 Web

 Databases

 Entity-relationship diagram

Outline

 Definitions

 Graph ADT

 Implementations

Outline

 Definitions

 Graph ADT

 Implementations

Edge Types

 Directed edge

 ordered pair of vertices (u,v)

 first vertex u is the origin

 second vertex v is the destination

 e.g., a flight

 Undirected edge

 unordered pair of vertices (u,v)

 e.g., a flight route

 Directed graph (Digraph)

 all the edges are directed

 e.g., route network

 Undirected graph

 all the edges are undirected

 e.g., flight network

ORD PVD

flight

AA 1206

ORD PVD

849

miles

Vertices and Edges

 End vertices (or endpoints) of
an edge

 U and V are the endpoints of a

 Edges incident on a vertex

 a, d, and b are incident on V

 Adjacent vertices

 U and V are adjacent

 Degree of a vertex

 X has degree 5

 Parallel edges

 h and i are parallel edges

 Self-loop

 j is a self-loop

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

Graphs

 A graph is a pair (V, E), where

 V is a set of nodes, called vertices

 E is a collection of pairs of vertices, called edges

 Vertices and edges are positions and store elements

 Example:

 A vertex represents an airport and stores the three-letter airport code

 An edge represents a flight route between two airports and stores the
mileage of the route

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

P1

Paths

 Path

 sequence of alternating
vertices and edges

 begins with a vertex

 ends with a vertex

 each edge is preceded and
followed by its endpoints

 Simple path

 path such that all its vertices
and edges are distinct

 Examples

 P1=(V,b,X,h,Z) is a simple path

 P2=(U,c,W,e,X,g,Y,f,W,d,V) is
a path that is not simple

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2

Cycles

 Cycle

 circular sequence of alternating

vertices and edges

 each edge is preceded and

followed by its endpoints

 Simple cycle

 cycle such that all its vertices

and edges are distinct

 Examples

 C1=(V,b,X,g,Y,f,W,c,U,a,V) is a

simple cycle

 C2=(U,c,W,e,X,g,Y,f,W,d,V,a,U)

is a cycle that is not simple

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2

Subgraphs

 A subgraph S of a graph

G is a graph such that

 The vertices of S are a

subset of the vertices of G

 The edges of S are a

subset of the edges of G

 A spanning subgraph of

G is a subgraph that

contains all the vertices of

G

Subgraph

Spanning subgraph

Connectivity

 A graph is connected if
there is a path between
every pair of vertices

 A connected component
of a graph G is a maximal
connected subgraph of G

Connected graph

Non connected graph with two

connected components

Trees

Tree Forest Graph with Cycle

A tree is a connected, acyclic, undirected graph.

A forest is a set of trees (not necessarily connected)

Spanning Trees

 A spanning tree of a connected
graph is a spanning subgraph that
is a tree

 A spanning tree is not unique
unless the graph is a tree

 Spanning trees have applications
to the design of communication
networks

 A spanning forest of a graph is a
spanning subgraph that is a forest

Graph

Spanning tree

Reachability in Directed Graphs

 A node w is reachable from v if there is a directed path

originating at v and terminating at w.

 E is reachable from B

 B is not reachable from E

A

C

E

B

D

F

Properties

Notation

|V| number of vertices

|E| number of edges

deg(v) degree of vertex v

Property 1

v deg(v) = 2|E|

Proof: each edge is counted
twice

Property 2

In an undirected graph with no
self-loops and no multiple
edges

|E| ≤ |V| (|V| - 1)/2

Proof: each vertex has degree
at most (|V| 1)

Example

 |V| = 4

 |E| = 6

 deg(v) = 3

A : E £ V (V -1)

Q: What is the bound for a digraph?

Outline

 Definitions

 Graph ADT

 Implementations

Main Methods of the (Undirected) Graph ADT

 Vertices and edges

 are positions

 store elements

 Accessor methods

 endVertices(e): an array of the
two endvertices of e

 opposite(v, e): the vertex
opposite to v on e

 areAdjacent(v, w): true iff v and
w are adjacent

 replace(v, x): replace element at
vertex v with x

 replace(e, x): replace element at
edge e with x

 Update methods

 insertVertex(o): insert a vertex
storing element o

 insertEdge(v, w, o): insert an
edge (v,w) storing element o

 removeVertex(v): remove vertex
v (and its incident edges)

 removeEdge(e): remove edge e

 Iterator methods

 incidentEdges(v): edges
incident to v

 vertices(): all vertices in the
graph

 edges(): all edges in the graph

Directed Graph ADT

 Additional methods:

 isDirected(e): return true if e is a directed edge

 insertDirectedEdge(v, w, o): insert and return a new directed
edge with origin v and destination w, storing element o

Outline

 Definitions

 Graph ADT

 Implementations

Running Time of Graph Algorithms

 Running time often a function of both |V| and |E|.

 For convenience, we sometimes drop the | . | in

asymptotic notation, e.g. O(V+E).

Implementing a Graph (Simplified)

Adjacency List Adjacency Matrix

Space complexity:

Time to find all neighbours of vertex :u

Time to determine if (,) : u v E

() V E

(degree()) u

(degree()) u

2() V

() V

(1)

Representing Graphs (Details)

 Three basic methods

 Edge List

 Adjacency List

 Adjacency Matrix

Edge List Structure
 Vertex object

 element

 reference to position in vertex
sequence

 Edge object

 element

 origin vertex object

 destination vertex object

 reference to position in edge
sequence

 Vertex sequence

 sequence of vertex objects

 Edge sequence

 sequence of edge objects

v

u

w

a c

b

a

z
d

u v w z

b c d

Adjacency List Structure

 Edge list structure

 Incidence sequence for
each vertex

 sequence of references to
edge objects of incident
edges

 Augmented edge objects

 references to associated
positions in incidence
sequences of end vertices

u

v

w

a b

a

u v w

b

Adjacency Matrix Structure

 Edge list structure

 Augmented vertex
objects

 Integer key (index)
associated with vertex

 2D-array adjacency
array

 Reference to edge
object for adjacent
vertices

 Null for non-
nonadjacent vertices

u

v

w

a b

0 1 2

0 Ø Ø

1 Ø

2 Ø Øa

u v w0 1 2

b

Asymptotic Performance

(assuming collections V and E represented as

doubly-linked lists)

|V| vertices, |E| edges

no parallel edges

no self-loops

Bounds are “big-Oh”

Edge
List

Adjacency
List

Adjacency
Matrix

Space |V|+|E| |V|+|E| |V|2

incidentEdges(v) |E| deg(v) |V|

areAdjacent (v, w) |E| min(deg(v), deg(w)) 1

insertVertex(o) 1 1 |V|2

insertEdge(v, w, o) 1 1 1

removeVertex(v) |E| deg(v) |V|2

removeEdge(e) 1 1 1

Outline

 Definitions

 Graph ADT

 Implementations

