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Applications of Graphs

 Electronic circuits

 Printed circuit board

 Integrated circuit

 Transportation networks

 Highway network

 Flight network

 Computer networks

 Local area network

 Internet

 Web

 Databases

 Entity-relationship diagram
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Edge Types

 Directed edge

 ordered pair of vertices (u,v)

 first vertex u is the origin

 second vertex v is the destination

 e.g., a flight

 Undirected edge

 unordered pair of vertices (u,v)

 e.g., a flight route

 Directed graph (Digraph)

 all the edges are directed

 e.g., route network

 Undirected graph

 all the edges are undirected

 e.g., flight network
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Vertices and Edges

 End vertices (or endpoints) of 
an edge

 U and V are the endpoints of a

 Edges incident on a vertex

 a, d, and b are incident on V

 Adjacent vertices

 U and V are adjacent

 Degree of a vertex

 X has degree 5 

 Parallel edges

 h and i are parallel edges

 Self-loop

 j is a self-loop
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Graphs

 A graph is a pair (V, E), where

 V is a set of nodes, called vertices

 E is a collection of pairs of vertices, called edges

 Vertices and edges are positions and store elements

 Example:

 A vertex represents an airport and stores the three-letter airport code

 An edge represents a flight route between two airports and stores the 
mileage of the route
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Paths

 Path

 sequence of alternating 
vertices and edges 

 begins with a vertex

 ends with a vertex

 each edge is preceded and 
followed by its endpoints

 Simple path

 path such that all its vertices 
and edges are distinct

 Examples

 P1=(V,b,X,h,Z) is a simple path

 P2=(U,c,W,e,X,g,Y,f,W,d,V) is 
a path that is not simple
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Cycles

 Cycle

 circular sequence of alternating 

vertices and edges 

 each edge is preceded and 

followed by its endpoints

 Simple cycle

 cycle such that all its vertices 

and edges are distinct

 Examples

 C1=(V,b,X,g,Y,f,W,c,U,a,V) is a 

simple cycle

 C2=(U,c,W,e,X,g,Y,f,W,d,V,a,U)

is a cycle that is not simple
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Subgraphs

 A subgraph S of a graph 

G is a graph such that 

 The vertices of S are a 

subset of the vertices of G

 The edges of S are a 

subset of the edges of G

 A spanning subgraph of 

G is a subgraph that 

contains all the vertices of 

G
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Connectivity

 A graph is connected if 
there is a path between 
every pair of vertices

 A connected component 
of a graph G is a maximal 
connected subgraph of G

Connected graph

Non connected graph with two 

connected components



Trees

Tree Forest Graph with Cycle

A tree is a connected, acyclic, undirected graph.

A forest is a set of trees (not necessarily connected)



Spanning Trees

 A spanning tree of a connected 
graph is a spanning subgraph that 
is a tree

 A spanning tree is not unique 
unless the graph is a tree

 Spanning trees have applications 
to the design of communication 
networks

 A spanning forest of a graph is a 
spanning subgraph that is a forest
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Reachability in Directed Graphs

 A node w is reachable from v if there is a directed path 

originating at v and terminating at w.

 E is reachable from B

 B is not reachable from E
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Properties

Notation

|V| number of vertices

|E| number of edges

deg(v) degree of vertex v

Property 1

v deg(v) = 2|E|

Proof: each edge is counted 
twice

Property 2

In an undirected graph with no 
self-loops and no multiple 
edges

|E| ≤ |V| (|V| - 1)/2

Proof: each vertex has degree 
at most (|V|  1)

Example

 |V| = 4

 |E| = 6

 deg(v) = 3

  
A :  E £ V (V -1)

Q:  What is the bound for a digraph?
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Main Methods of the (Undirected) Graph ADT

 Vertices and edges

 are positions

 store elements

 Accessor methods

 endVertices(e): an array of the 
two endvertices of e

 opposite(v, e): the vertex 
opposite to v on e

 areAdjacent(v, w): true iff v and 
w are adjacent

 replace(v, x): replace element at 
vertex v with x

 replace(e, x): replace element at 
edge e with x

 Update methods

 insertVertex(o): insert a vertex 
storing element o

 insertEdge(v, w, o): insert an 
edge (v,w) storing element o

 removeVertex(v): remove vertex 
v (and its incident edges)

 removeEdge(e): remove edge e

 Iterator methods

 incidentEdges(v): edges 
incident to v

 vertices(): all vertices in the 
graph

 edges(): all edges in the graph



Directed Graph ADT

 Additional methods:

 isDirected(e): return true if e is a directed edge

 insertDirectedEdge(v, w, o): insert and return a new directed 
edge with origin v and destination w, storing element o
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Running Time of Graph Algorithms

 Running time often a function of both |V| and |E|.

 For convenience, we sometimes drop the | . | in 

asymptotic notation, e.g. O(V+E).



Implementing a Graph (Simplified)

Adjacency List Adjacency Matrix

Space complexity:

Time to find all neighbours of vertex :u

Time to determine if ( , ) :  u v E

( ) V E

(degree( )) u

(degree( )) u

2( ) V

( ) V

(1)



Representing Graphs (Details)

 Three basic methods

 Edge List

 Adjacency List

 Adjacency Matrix



Edge List Structure
 Vertex object

 element

 reference to position in vertex 
sequence

 Edge object

 element

 origin vertex object

 destination vertex object

 reference to position in edge 
sequence

 Vertex sequence

 sequence of vertex objects

 Edge sequence

 sequence of edge objects
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Adjacency List Structure

 Edge list structure

 Incidence sequence for 
each vertex

 sequence of references to 
edge objects of incident 
edges

 Augmented edge objects

 references to associated 
positions in incidence 
sequences of end vertices
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Adjacency Matrix Structure

 Edge list structure

 Augmented vertex 
objects

 Integer key (index) 
associated with vertex

 2D-array adjacency 
array

 Reference to edge 
object for adjacent 
vertices

 Null for non-
nonadjacent vertices
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Asymptotic Performance 

(assuming collections V and E represented as 

doubly-linked lists)

|V| vertices, |E| edges

no parallel edges

no self-loops

Bounds are “big-Oh”

Edge
List

Adjacency
List

Adjacency 
Matrix

Space |V|+|E| |V|+|E| |V|2

incidentEdges(v) |E| deg(v) |V|

areAdjacent (v, w) |E| min(deg(v), deg(w)) 1

insertVertex(o) 1 1 |V|2

insertEdge(v, w, o) 1 1 1

removeVertex(v) |E| deg(v) |V|2

removeEdge(e) 1 1 1
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